Bölme İşlemi Nedir? Bölmede Bölüm ve Bölümün Basamak Sayısı Nasıl Tahmin Edilir

Matematikte bölme, dört ana aritmetik işlemden biri. Yazımda “÷” , “:” veya “/” işareti ile sembolize edilir. Bölme işlemi genellikle “çarpma işleminin tersi” olarak tanımlanır zira:
a = b x c ise
a ÷ b = c ve
a ÷ c = b olacaktır.

Çarpımı ve çarpanlarından biri verilen çarpma işleminde verilmeyen çarpanı bulmak için bölme işlemi yapılır. Bu nedenle çarpma ve bölme işlemleri birbiri ile ilgilidir. Kalanı sıfır olan bölme işlemine, kalansız bölme denir.

Kalansız bir bölme işleminde,

Bölünen : Bölen = Bölüm veya Bölünen = Bölen x Bölüm

Kalanı sıfırdan farklı olan bölme işlemine, kalanlı bölme işlemi denir. Kalanlı bölme işleminde kalan, bölenden daima küçüktür.

Kalanlı bölme işleminde,

Bölünen = ( Bölen x Bölüm ) + Kalan

BÖLME İŞLEMİNDE BÖLÜMÜ TAHMİN ETME

Bir bölme işleminde bölümü tahmin etmek için;
a) Bölen bir basamaklıysa, bölünenin yaklaşığını alır, sonra bölümü tahmin ederiz.
b) Bölen iki ya da daha fazla basamaklıysa, önce bölenin sonra da bölünenin yaklaşığını alır ve bölümü tahmin ederiz.
Bölümü tahmin etmek, bölme işleminde yapılan bazı hataları önler.

BÖLME İŞLEMİNDE BÖLÜMÜN BASAMAK SAYISINI TAHMİN ETME

Bir bölme işleminde bölümün basamak sayısını tahmin etmek için;
a) Bölünenin en büyük basamağındaki rakamın sayı değeri bölene eşit veya bölenden büyük ise, bölümün basamak sayısı, bölünenin basamak sayısı kadar olur.
b) Bölenin basamak sayısı birden fazla ise, bölünenden aynı sayıda basamak ayrılır ve bölüm için bir basamak düşünülür. Bölünenin geriye kalan basamak sayısına ayrılan 1 eklenerek bölümün basamak sayısı bulunur.

Kural: Aynı işaretli iki tam sayının bölümü pozitif, ters işaretli iki tam sayının bölümü negatiftir.

Örnek: Aşağıdaki işlemlerde bölünen sayılar aynı işaretli olduğu için cevap pozitiftir.

(+15) : (+3) = + 5

(- 12) : (- 4) = + 3

21 : 7 = 3

Örnek: Aşağıdaki işlemlerde bölünen sayılar ters işaretli olduğu için cevap negatiftir.

(- 16) : (+4) = – 4

8 : (- 2) = – 4

-3 : 3 = – 1

BÖLÜNEBİLME KURALLARI
1. 2 İle Bölünebilme

Birler basamağındaki rakamı çift olan sayılar 2 ile tam bölünür.

Tek sayıların 2 ile bölümünden kalan 1 dir.

2. 3 İle Bölünebilme

Rakamlarının sayısal değerleri toplamı 3 ün katı olan sayılar 3 ile tam bölünür.

Bir sayının 3 ile bölümünden kalan, rakamlarının toplamının 3 ile bölümünden kalana eşittir.

3. 4 İle Bölünebilme

Bir sayının onlar basamağındaki rakam ile birler basamağındaki rakamın (son iki basamak) belirttiği sayı, 4 ün katı olan sayılar 4 ile tam bölünür.
… abc sayısının 4 ile bölümünden kalan bc nin (son iki basamak) 4 ile bölümünden kalana eşittir.

l… abc sayısının 4 ile bölümünden kalan

c + 2 . b nin 4 ile bölümünden kalana eşittir.
4. 5 İle Bölünebilme

Birler basamağındaki rakam 0 veya 5 olan sayılar 5 ile tam bölünür.

Bir sayının 5 ile bölümünden kalan, o sayının birler basamağındaki rakamın 5 ile bölümünden kalana eşittir.

5. 7 İle Bölünebilme

(n + 1) basamaklı anan-1 … a4a3a2a1a0 sayısının 7 ile tam bölünebilmesi için,

k Î Z olmak üzere,

(a0 + 3a1 + 2a2) – (a3 + 3a4 + 2a5) + … = 7k

olmalıdır.

ÜBirler basamağı a0, onlar basamağı a1, yüzler basamağı a2, … olan sayının 7 ile bölümünden kalan (a0 + 3a1 + 2a2) – (a3 + 3a4 + 2a5) + … işleminin sonucunun 7 ile bölümünden kalana eşittir.

6. 8 İle Bölünebilme

Yüzler basamağındaki, onlar basamağındaki ve birler basamağındaki rakamların (son üç rakamın) belirttiği sayı 8 in katı olan sayılar 8 ile tam bölünür.

3000, 3432, 65104 sayıları 8 ile tam bölünür.

ÜBirler basamağı c, onlar basamağı b, yüzler basamağı a, … olan sayının 8 ile bölümünden kalan c + 2 . b + 4 . a toplamının 8 ile bölü-münden kalana eşittir.

7. 9 İle Bölünebilme

Rakamlarının toplamı 9 un katı olan sayılar 9 ile tam bölünür.

Bir sayının 9 ile bölümünden kalan, o sayının rakamlarının toplamının 9 ile bölümünden kalana eşittir.

8. 10 İle Bölünebilme

Birler basamağındaki rakamı 0 (sıfır) olan sayılar 10 ile tam bölünebilir. Bir sayının birler basamağındaki rakam o sayının 10 ile bölümünden kalandır.

9. 11 İle Bölünebilme

(n + 1) basamaklı anan–1 … a4a3a2a1a0 sayısının 11 ile tam bölünebilmesi için

(a0 + a2 + a4 + …) – (a1 + a3 + a5 + …)… = 11 . k

ve kÎZ olmalıdır.

®(n + 1) basamaklı anan–1 … a4a3a2a1a0 sayı-sının 11 ile bölümünden kalan

(a0 + a2 + a4 + …) – (a1 + a3 + a5 + …)… işleminin sonucunun 11 ile bölümünden kalana eşittir.

Aralarında asal iki sayıya bölünebilen bir sayı, bu iki sayının çarpımına da tam bölünür.

  • 2 ve 3 ile tam bölünen sayılar 6 ile de bölünür.
  • 3 ve 4 ile tam bölünen sayılar 12 ile de bölünür.

C. BÖLEN KALAN İLİŞKİSİ
A, B, C, D, E, K1, K2 uygun koşullarda birer doğal sayı olmak üzere,

A nın C ile bölümünden kalan K1 ve

B nin C ile bölümünden kalan K2 olsun.

Buna göre,

  • A . B nin C ile bölümünden kalan K1 . K2 dir.
  • A ± B nin C ile bölümünden kalan K1 ± K2 dir.
  • D . A nın C ile bölümünden kalan D . K1 dir.
  • AE nin C ile bölümünden kalan K1E dir.

Burada kalan değerler bölenden (C den) büyük ise, tekrar C ile bölünerek kalan bulunur.

Bu Yazıyı Paylaş! Google+!

Kategori: Eğitim - 102 viewsYorum Yazın

Selçuk Gönültaş

DMCA.com Protection Status